Device and Circuit-Level Assessment of GaSb/Si Heterojunction Vertical Tunnel-FET for Low-Power Applications

2020 
This article investigates the performance of a vertically grown GaSb/Si tunnel field effect transistor (V-TFET) with a source pocket to enhance the performance of the device. The commercially available Silvaco TCAD has been used for simulating the proposed V-TFET structure. A low bandgap material, GaSb, is used in the source region for the first time to enhance the carrier tunneling through the source (GaSb)-channel (Si) heterojunction. The proposed V-TFET with a pocket shows the improved subthreshold swing (SS) of 26 mV/decade at ${V}_{{\textit {DS}}}= 0.5$ V over the V-TFET without any pocket. The effects of temperature on SS and ${I}_{ \mathrm{\scriptscriptstyle ON}}/{I}_{ \mathrm{\scriptscriptstyle OFF}}$ ratio along with the analog/RF figures of merit (FOMs) are also analyzed for V-TFETs with and without a pocket. The results are also compared with some recently reported TFETs. The dc and analog/RF performances of V-TFET with a pocket are shown to be better than those of the V-TFET without a pocket and other reported TFET structures. Finally, the applications of V-TFETs with and without a pocket in designing inverter and ring oscillator circuits have been demonstrated. The dc and transient responses of the V-FET-based inverter and ring oscillator circuits have been analyzed using the Verilog-A model in the CADENCE tool.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    32
    Citations
    NaN
    KQI
    []