MiR-1297 attenuates high glucose-induced injury in HK-2 cells via targeting COL1A2.

2021 
BACKGROUND In this study, we aimed to explore whether COL1A2 and miR-1297 participated in the progression of diabetic nephropathy (DN) in vitro and classified the underlying mechanisms. METHODS D-glucose (30 mM; high glucose, HG)-stimulated HK-2 cells were used to mimic DN condition. RNA and non-coding RNA profiles were from Gene Expression Omnibus (GEO) database. The interaction between miR-1297 and COL1A2 was measured by dual-luciferase reporter assay. Gene Set Enrichment Analysis (GSEA) method was conducted to analyze COL1A2-associated signaling pathways. The role of miR-1297/COL1A2 in biological behaviors of HG-induced HK-2 cells were analyzed by cell counting kit-8 and apoptosis assays. RESULTS Bioinformatics analysis revealed that COL1A2 was up-regulated in DN tissues. We predicted and verified miR-1297 as the regulatory miRNA of COL1A2, and the expression of miR-1297 was decreased in DN tissues and HG-stimulated HK-2 cells. Overexpression of miR-1297 could promote cell proliferation and inhibit apoptosis to protect HK-2 cells from HG-induced damage. And knockdown of COL1A2 enhanced the protective effects of miR-1297 on HG-stimulated HK-2 cells. GSEA results revealed that several inflammatory pathways were enriched in COL1A2 high-expression group. Meanwhile, transfection of miR-1297 reduced the phosphorylation of NFκB and expression of three important pro-inflammatory genes including cytokine CCL5, adhesion molecules ICAM1 and VCAM1 via targeting COL1A2. These results suggested that miR-1297 protected HG-treated HK-2 cells probably through suppressing inflammation via targeting COL1A2. CONCLUSION This study sheds a light on the role miR-1297/COL1A2 in DN progression and provides a novel promising therapy strategy for suppressing DN progression. This article is protected by copyright. All rights reserved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    1
    Citations
    NaN
    KQI
    []