Design of coherence-aware channel indication and prediction for rate adaptation

2019 
A number of rate adaptation protocols have been proposed using instantaneous channel quality to select the physical layer data rate. However, the indication of channel quality varies widely across platforms from simply a received signal strength level to a measurement of signal-to-noise ratio (SNR) across sub-carriers, with each channel quality indicator having differing levels of measurement error. Moreover, due to fast channel variations, even aggressive channel probing fails to offer an up-to-date notion of channel quality. In this paper, we propose a coherence-aware Channel Indication and Prediction algorithm for Rate Adaptation (CIPRA) and evaluate it analytically and experimentally, considering both the effects of measurement errors and the staleness of channel quality indicators. CIPRA uses the minimum mean square error (MMSE) method and first-order prediction. Our evaluation shows that CIPRA jointly considers the time interval over which the prediction will occur and the coherence time of the channel to determine the optimal window size for previous channel quality indicator measurements. Also, we demonstrate that CIPRA outperforms existing methods in terms of prediction fidelity and throughput via experimental results. By combining a strong channel indicator with the coherence-aware MMSE first-order channel prediction algorithm, CIPRA nearly doubles the throughput achieved in the field from the indication and prediction method currently used by off-the-shelf WiFi interfaces.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    0
    Citations
    NaN
    KQI
    []