DESIRE Simulation tool to demonstrate data products for security applications

2015 
The Simulation Tool to demonstrate Data Products for Security Applications (DESIRE) is a simulation tool aimed at demonstrating the added value of including a thermal infrared (TIR) imager within different space-borne architecture options comprising different capabilities i.e. SAR and optical. The simulator has been developed considering as end users system designers that need to assess the added value of infrared data when they are combined with other data. The DESIRE Tool development has been based on mission scenarios that address the priority areas identified in the GMES services for security e.g. Border security, Maritime Surveillance and Support to EU External Action. Particular relevant scenarios taken into account for the simulator user requirements analysis have been Oil Spill Detection, Maritime Ship Surveillance, Industrial Site Monitoring and Urban Heat Islands. The simulator is composed of an external interface capable of ingesting different input products at different processing levels (from L0 to L2, depending of the data type), a processing chain for each data type to bring the products up to L3, a co-registration module, different data combination and data fusion techniques (in order to generate merged maps or maps with information extracted from different products), and a set of modules to customize and validate the data-fusion products depending on the scenario under investigation. DESIRE has been implemented as a flexible, configurable and modular simulation tool, to be used for existing and firmly planned in-orbit capability and to combine these with real or synthetic TIR data products. DESIRE is based on the simulation framework OpenSF. The modular design of DESIRE allows the future extension of the simulator functionality with additional processing modules in order to deal with a wider range of scenarios and in-orbit architectures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    0
    Citations
    NaN
    KQI
    []