Translocation of capsular polysaccharides in pathogenic strains of Escherichia coli requires a 60-kilodalton periplasmic protein.

1987 
An 11.6-kilobase (kb) region of a 34-kb fragment of Escherichia coli DNA that encodes the K1 capsular polysaccharide genes is necessary for translocation of the K1 polysaccharide to the bacterial cell surface. This 11.6-kb region contains a gene, kpsD, encoding a 60-kilodalton protein. The kpsD gene was localized to a 2.4-kb PstI-BamHI fragment. Cells harboring a Tn1000 insertion in kpsD did not synthesize the 60-kilodalton protein and did not express polysaccharide on the cell surface. Immunodiffusion and rocket immunoelectrophoresis of cell extracts, however, demonstrated that K1 polysaccharide was synthesized by these cells. We present evidence that the kpsD gene product is synthesized as a precursor and that the processed form is located in the periplasmic space. Analysis of alkaline phosphatase activity of a kpsD-phoA fusion demonstrated that kpsD expression was under positive regulation. A 260-base-pair AluI fragment located within the kpsD coding sequence was used as a probe and was found to hybridize to chromosomal DNA from E. coli that synthesizes the K2, K5, K7, K12, and K13 capsular polysaccharides but not K3 and K100. These results suggest that the kpsD gene product may be required for export not only of K1 but for other K antigens as well. Images
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    52
    Citations
    NaN
    KQI
    []