Temporal patterns in Ixodes ricinus microbial communities: an insight into tick-borne microbe interactions

2020 
Background Ticks transmit pathogens of medical and veterinary importance, and represent an increasing threat for human and animal health. Important steps in assessing disease risk and developing possible new future control strategies involve identifying tick-borne microbes, their temporal dynamics and interactions. Methods Using high throughput sequencing, we studied the microbiota dynamics of Ixodes ricinus from 371 nymphs collected monthly over three consecutive years in a peri-urban forest. After adjusting a Poisson Log Normal model to our data set, the implementation of a principal component analysis as well as sparse network reconstruction and differential analysis allowed us to assess inter-annual, seasonal and monthly variability of I. ricinus microbial communities as well as their interactions. Results Around 75% of the detected sequences belonged to five genera known to be maternally inherited bacteria in arthropods and potentially circulating in ticks: Candidatus Midichloria, Rickettsia, Spiroplasma, Arsenophonus and Wolbachia. The structure of the I. ricinus microbiota was temporally variable with interannual recurrence and seemed to be mainly driven by OTUs belonging to environmental genera. The total network analysis revealed a majority of positive (partial) correlations. We identified strong relationships between OTUs belonging to Wolbachia and Arsenophonus, betraying the presence of the parasitoid wasp Ixodiphagus hookeri in ticks, and the well known arthropod symbiont Spiroplasma, previously documented to be involved in the defense against parasitoid wasp in Drosophila melanogaster. Other associations were observed between the tick symbiont Candidatus Midichloria and pathogens belonging to Rickettsia, probably Rickettsia helvetica. More specific network analysis finally suggested that the presence of pathogens belonging to genera Borrelia, Anaplasma and Rickettsia might disrupt microbial interactions in I. ricinus. Conclusions Here, we identified the I. ricinus microbiota and documented for the first time the existence and recurrence of marked temporal shifts in the tick microbial community dynamics. We statistically showed strong relationships between the presence of some pathogens and the structure of the I. ricinus non-pathogenic microbes. We interestingly detected close links between some tick symbionts and the potential presence of either pathogenic Rickettsia or a parasitoid in ticks. All these new findings might be very promising for the future development of new control strategies of ticks and tick-borne diseases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    107
    References
    2
    Citations
    NaN
    KQI
    []