A Novel Maximum-Likelihood Detection for the Binary MIMO System Using DC Programming

2019 
The multiple-input multiple-output (MIMO) system is widely used in wireless communications. For the problem of the discrete maximum-likelihood (ML) detection for the MIMO system, one can formulate it as binary quadratic programming (BQP). The general BQP problem is an NP-hard problem, which is a challenge for finding promising solutions. The variable complexity is a special considered issue. In this paper, inspired by the optimization of sparse constrains, we employ a regularization approach to deal with the binary constraints in the proposed formulation and then introduce the difference of convex functions (DC) programming to solve the formulated nonconvex cost function. A novel and robust DC algorithm is proposed. Numerical experiments show that the proposed algorithm, which is based on DC programming, can achieve accurate results with a higher convergence rate.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    0
    Citations
    NaN
    KQI
    []