Increased metallothionein gene expression in 5-AZA-2′-deoxycytidine-induced resistance to cadmium cytotoxicity

1988 
Abstract The pyrimidine analog, 5-azacytidine (AZA-CR), has been shown to increase the expression of the metallothionein (MT) gene and to induce tolerance to cadmium toxicity. Since incorporation into DNA of AZA-CR appears to be required for this effect, the deoxynucleoside of AZA-CR should also be effective. Therefore, this study was undertaken to assess the effect of 5-aza-2′-deoxycytidine (AZA-CdR) pretreatment on cadmium-induced cytotoxicity and MT expresssion in cultured cells. TRL 1215 cells in log phase of growth were exposed to AZA-CdR (0.4, 0.8, 4.0, 8.0 μM) followed 48 h later by the addition of cadmium (10 μM). MT concentrations were measured 24 h after the addition of cadmium. AZA-CdR alone caused modest, dose-related increases in MT levels (2.3-fold maximum), while cadmium alone resulted in a 9.5-fold increase. Pretreatment with AZA-CdR in combination with cadmium caused a 19–24-fold increase in cellular MT at all doses of AZA-CdR. Addition of the DNA synthesis inhibitor, hydroxyurea (HU), to the incubation medium during AZA-CdR exposure prevented the enhancing effect of the analog on cadmium induction of MT accumulation. Time course studies revealed that AZA-CdR pretreatment reduced the time required for cadmium to induce MT levels from 4–8 h to 0–2 h. AZA-CdR pretreated cells placed in suspension with cadmium (125 μM) showed a marked reduction in cadmium-induced cytotoxicity as reflected by reduced glutamic-oxaloacetic transaminase (GOT) loss. Uptake studies showed that AZA-CdR pretreatment had no effect on cadmium transport during the initial phases of exposure, indicating that an alteration in the toxicokinetics of the metal did not account for the reduction in toxicity. AZA-CdR did, however, cause hypomethylation of the MT-I gene. These results suggest that AZA-CdR pretreatment induces tolerance to cadmium toxicity by increasing the genetic expression of MT possibly through hypomethylation of the MT gene.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    23
    Citations
    NaN
    KQI
    []