Copy-number variation contributes 9% of pathogenicity in the inherited retinal degenerations
2019
Purpose: Current sequencing strategies can genetically solve 55-60% of inherited retinal degeneration (IRD) cases, despite recent progress in sequencing. This can partially be attributed to elusive pathogenic variants (PVs) in known IRD genes, including copy number variations (CNVs), which we believe are a major contributor to unsolved IRD cases.
Methods: Five hundred IRD patients were analyzed with targeted next generation sequencing (NGS). The NGS data was used to detect CNVs with ExomeDepth and gCNV and the results were compared to CNV detection with a SNP-Array. Likely causal CNV predictions were validated by quantitative (q)PCR.
Results: Likely disease-causing single nucleotide variants (SNVs) and small indels were found in 55.8% of subjects. PVs in USH2A (11.6%), RPGR (4%) and EYS (4%) were the most common. Likely causal CNVs were found in an additional 8.8% of patients. Of the three CNV detection methods, gCNV showed the highest accuracy. Approximately 30% of unsolved subjects had a single likely PV in a recessive IRD gene.
Conclusions: CNV detection using NGS-based algorithms is a reliable method that greatly increases the genetic diagnostic rate of IRDs. Experimentally validating CNVs helps estimate the rate at which IRDs might be solved by a CNV plus a more elusive variant.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
76
References
0
Citations
NaN
KQI