A Novel SRP Recognition Sequence in the Homeostatic Control Region of Heat Shock Transcription Factor σ32.

2016 
Heat shock response (HSR) generally plays a major role in sustaining protein homeostasis. In Escherichia coli, the activity and amount of the dedicated transcription factor σ32 transiently increase upon heat shock. The initial induction is followed by chaperone-mediated negative feedback to inactivate and degrade σ32. Previous work reported that signal recognition particle (SRP)-dependent targeting of σ32 to the membrane is essential for feedback control, though how SRP recognizes σ32 remained unknown. Extensive photo- and disulfide cross-linking studies in vivo now reveal that the highly conserved regulatory region of σ32 that lacks a consecutive hydrophobic stretch interacts with the signal peptide-binding site of Ffh (the protein subunit of SRP). Importantly, the σ32–Ffh interaction observed was significantly affected by mutations in this region that compromise the feedback regulation, but not by deleting the DnaK/DnaJ chaperones. Homeostatic regulation of HSR thus requires a novel type of SRP recognition mechanism.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    25
    Citations
    NaN
    KQI
    []