Correlated Roles of Temperature and Dimensionality for the Multiple Exciton Generation and Electronic Structures in the Quantum Dot Superlattices

2019 
Quantum dot superlattices (QDSLs), which are one-, two-, and three-dimensional periodic superlattices composed of QDs, induce dimensionality dependent quantum resonance among component QDs and thus represent a new type of condensed matter exhibiting novel energy, exciton and carrier dynamics. We focused on the two important parameters, the dimensionality and temperature, identifying their correlated roles to determine the electronic and photoexcited properties intrinsic to each QDSL at each dimensionality and temperature. We computationally demonstrated that the multiple exciton generation is significantly accelerated at higher temperature especially in the higher-dimensional QDSLs, indicating their great advantage especially at ambient temperature compared to an isolated zero-dimensional QD. Both of the dimensionality and temperature can be crucial and correlated parameters for independent tailoring of the properties of the QDSLs without changing size, shape and compositions of component QDs. The physica...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    4
    Citations
    NaN
    KQI
    []