Experimental and numerical study of submerged jets from pipes of different wall thickness for Re<1

2019 
In this work, the experimental and numerical results from the study of the effects caused in a submerged jet flow by the change in the wall thickness of the circular tube from which said flow originates are presented. For small values of the Reynolds number Re (Re\approx0.11), four cases, regarding the ratio of pipe wall thickness to its radius, are considered: (I) pipe thickness is a fourth of the radius, (II) pipe thickness is a half the radius, (III) pipe thickness is equal to the radius and (IV) pipe thickness is three times the radius. The Particle Image Velocimetry (PIV) technique was used in order to obtain experimentally the velocity and streamlines distributions. A numerical code based on the finite difference method was developed to solve the motion governing equations and the numerical results were compared with the values obtained experimentally.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []