Phase-locked analysis of velocity fluctuations in a turbulent free swirling jet after vortex breakdown

2012 
Large-scale organized vortical structures were studied experimentally in a free swirling jet of air experiencing vortex precession (PVC) at ambient conditions. Detailed measurements were performed in the region near the nozzle exit using phase-locked LDV and PIV, at a Reynolds number of Re ≈ 24,400 and a swirl parameter S ≈ 1.0. The investigation allowed reconstruction of the time-averaged flowfield, with the associated distribution of turbulent fluctuations, the phase-locked structure of the jet and the associated precessing vortex structure. An original joint analysis of power spectra and probability density functions of velocity data led to quantification of the PVC effect on turbulent fluctuations. This analysis showed that the PVC contribution can be properly separated from the background random turbulence, reproducing the results of phase-locked measurements. It is found that the background turbulence in the near field is substantially weaker if compared to the coherent fluctuations induced by vortex precession.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    14
    Citations
    NaN
    KQI
    []