Wnt/β-catenin signaling regulates neuronal differentiation of mesenchymal stem cells.

2013 
Abstract Mesenchymal stem cells (MSCs) have been demonstrated to be able to differentiate into neuron-like cells, but the precise mechanisms controlling this process are unclear. Using neuron-specific enolase (NSE) and nestin as neuronal markers, we examined the role of Wnt/β-catenin signaling in MSC neuronal differentiation in present study. The results indicated that the expression of β-catenin increased markedly during the neuronal differentiation of MSCs. Blocking Wnt signaling by treating MSCs with β-catenin siRNA could decrease the differentiation of MSCs into neuron-like cells and up-regulation of Wnt signaling by treating MSCs with Wnt-3a could promote neuronal differentiation of MSCs. Above results suggest that Wnt/β-catenin signaling may play a pivotal role in neuronal differentiation of MSCs. Our data broaden the knowledge of molecular mechanisms involved in the neuronal differentiation of MSCs and provide a potential target for directing differentiation of MSCs for clinical application.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    14
    Citations
    NaN
    KQI
    []