Short hairpin RNA–expressing bacteria elicit RNA interference in mammals

2006 
Abstract RNA-interference (RNAi) is a potent mechanism, conserved from plants to humans for specific silencing of genes, which holds promise for functional genomics and gene-targeted therapies. Here we show that bacteria engineered to produce a short hairpin RNA (shRNA) targeting a mammalian gene induce trans-kingdom RNAi in vitro and in vivo. Nonpathogenic Escherichia coli were engineered to transcribe shRNAs from a plasmid containing the invasin gene Inv and the listeriolysin O gene HlyA, which encode two bacterial factors needed for successful transfer of the shRNAs into mammalian cells. Upon oral or intravenous administration, E. coli encoding shRNA against CTNNB1 (catenin β-1) induce significant gene silencing in the intestinal epithelium and in human colon cancer xenografts in mice. These results provide an example of trans-kingdom RNAi in higher organisms and suggest the potential of bacteria-mediated RNAi for functional genomics, therapeutic target validation and development of clinically compatible RNAi-based therapies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    225
    Citations
    NaN
    KQI
    []