Single Pt atom-anchored C3N4: A bridging Pt–N bond boosted electron transfer for highly efficient photocatalytic H2 generation

2021 
Abstract Graphitic carbon nitride (C3N4) has gained considerable attention regarding as ideal candidates for water splitting photocatalysis. However, its photocatalytic efficiency is still quite unsatisfactory due to the serious charge-carrier recombination and limited number of active sites. To overcome its bottleneck, herein, we fabricate an atomically Pt-dispersed C3N4 (Pt SAs/C3N4) photocatalyst, in which Pt–N bonds serve as a bridge for direct migration of photoexcited electrons from C3N4 to Pt active sites. The bridging Pt–N bond shortens the electronic transfer distance and improves the charge separation, thus accelerating the photocatalytic H2 evolution performance. The H2 evolution performance of Pt SAs/C3N4 photocatalyst (573.6 μmol h−1) is remarkably improved by two orders of magnitude compared to pristine C3N4 (6.1 μmol h−1). The spatial separation of photogenerated charges promoted by Pt–N bonds were well proved by both empirical characterizations and theoretical calculations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    9
    Citations
    NaN
    KQI
    []