miR-181b-5p Promotes the Progression of Cholangiocarcinoma by Targeting PARK2 via PTEN/PI3K/AKT Signaling Pathway

2021 
This study combined with bioinformatics analysis and investigated the expression pattern of miR-181b-5p, as well as explored its role and mechanism in cholangiocarcinoma (CCA or CHOL). Several bioinformatics databases were used to analyze the expression of miR-181b and the enrichment of miR-181b in biological activities and biological pathways in CCA. The RT-qPCR analysis was used to examine the expression levels of miR-181b-5p. A receiver operation characteristics (ROC) curve analysis and the Kaplan-Meier survival assay were conducted to validate the diagnostic and prognostic implication of miR-181b-5p. Cell experiments were used to explore the possible functional role of miR-181b-5p in CCA progression. The bioinformatics assay was used to predict the target gene of miR-181b-5p and Western blot was used to confirm the related signaling pathway. The bioinformatics analysis results suggest that miR-181b-5p was highly expressed in cholangiocarcinoma and its expression was negatively related to PARK2 expression in CCA tissues. miR-181b-5p expression in the serum and tissues was upregulated and associated with lymph node metastasis and TNM stage. Increased expression of miR-181b-5p had relatively high diagnostic accuracy and showed poor prognosis in CCA patients. In addition, miR-181b-5p overexpression enhanced cell proliferation, migration, and invasion by targeting PARK2. Overexpression of miR-181b-5p activated the PI3K/AKT signaling pathway, while knockdown of miR-181b-5p suppressed the signaling pathway. Increased expression of miR-181b-5p in CCA may be a potential diagnostic or/and prognostic indicator for CCA patients. The present data indicated miR-181b-5p acted as an oncogene in CCA through promoting tumor cell proliferation, migration, and invasion of CCA via the PTEN/PI3K/AKT signaling pathway by targeting PARK2, which might be a promising therapeutic target or biomarker for CCA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    0
    Citations
    NaN
    KQI
    []