The conductivity of high-fluence noble gas ion irradiated CVD polycrystalline diamond

2017 
Abstract The conductivity of surface layer of polycrystalline CVD (Chemical Vapor Deposition) diamond has been studied experimentally after high-fluence 30 keV Ne + , 20 and 30 keV Ar + ion irradiation at target temperature range from 30 to 400 °C. The hot ion irradiation of CVD diamond may be described as ion-stimulated heat graphitization in which an exponential resistance decrease with increasing of the irradiation temperature is much faster than at the heat treatment. Under ion irradiation of CVD diamond the graphite-like materials resistivity is achieved at temperatures not exceeding 200 °C. The graphite phase in a heterogeneous structure of diamond irradiated layer is in dynamic equilibrium. In the temperature range from RT to 400 °C, the proportion of graphite phase increases so that at temperatures 200  ir 2 -bonded carbon.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    4
    Citations
    NaN
    KQI
    []