Rate of dehydration, state of subcellular organisation and nature of cryoprotection are critical factors contributing to the variable success of cryopreservation: studies on recalcitrant zygotic embryos of Haemanthus montanus

2012 
Effects of sequential procedures required for cryopreservation of embryos excised from the recalcitrant seeds of Haemanthus montanus were assessed ultrastructurally and in conjunction with respiratory activity and the rate of protein synthesis. Fresh material (water content, 5.05 ± 0.92 g g−1 dry mass) afforded ultrastructural evidence of considerable metabolic activity, borne out by respiratory rates. Neither exposure to glycerol nor sucrose as penetrating and non-penetrating cryoprotectants, respectively, brought about degradative changes, although increased vacuolation and autophagy accompanied both, while respiratory and protein synthetic activity were not adversely affected. Glycerol-cryoprotected embryos flash dried to water contents >0.4 g g−1 showed organised ultrastructural features and considerable autophagy consistent with metabolic activity, and although respiratory activity was lower, protein synthesis rate was enhanced relative to fresh material. However, at water contents 0.4 g g−1—in which the degree of vacuolation remained moderate—were rapidly cooled. The outcomes of this study are considered particularly in terms of the stresses imposed by prolonged, relatively slow dehydration and ultimate water contents, on embryos showing considerable metabolic activity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    22
    Citations
    NaN
    KQI
    []