Direct diastolic ventricular interaction gain measured with sudden hemodynamic transients.

1989 
Changes in right ventricular volume affect left ventricular function via direct ventricular interaction mediated by the septum, common myocardial fibers in the free wall, and the pericardium, and also via series interaction mediated by changes in right ventricular output reaching the left ventricle through the pulmonary circulation. To study direct interaction, series interaction must be held constant or removed from the experimental preparation. Because there has been no way to directly measure direct ventricular interaction in the intact circulation, we developed a new method to experimentally separate these two components of ventricular interaction by combining abrupt occlusion of both venae cavae and quick withdrawal of 10-15 ml of blood from the right ventricle. This procedure decreased right ventricular end-diastolic pressure (RVEDP) on the next beat without changing pulmonary venous flow, left ventricular end-diastolic segment lengths, or left ventricular systolic function. The direct interaction gains, quantified as delta LVEDP/delta RVEDP, where LVEDP is left ventricular end-diastolic pressure, and delta refers to the change between the beats before and after reducing right ventricular volume, were (means +/- SD) 0.32 +/- 0.32 at steady-state LVEDP = 5 mmHg, 0.38 +/- 0.23 at LVEDP = 10 mmHg, and 0.28 +/- 0.32 at LVEDP = 15 mmHg. These gains were not significantly different (P greater than 0.50). Therefore, we calculated an overall average gain by pooling data from the three base-line LVEDP conditions. This value is 0.33 with 95% confidence interval 0.16-0.51. This 95% confidence interval indicates our data are consistent with many previous reports of diastolic direct interaction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    5
    Citations
    NaN
    KQI
    []