Microtubules continuously dictate distribution of actin filaments and positioning of cell cleavage in grasshopper spermatocytes

2004 
We systematically examined the impact of microtubules on distribution of actin filaments and positioning of cell cleavage using micromanipulation to progressively alter the symmetric distribution of spindle microtubules in grasshopper spermatocytes. The initial microtubule asymmetry was induced by placing a single chromosome at one spindle pole using a microneedle, which facilitates regional assembly of spindle microtubules. We augmented chromosome-induced microtubule asymmetry by further removing the aster from the achromosomal pole, producing unichromosome-bearing monopolar spindles. We created the highest spindle asymmetry by cutting early anaphase cells in two, each containing a full set of segregating chromosomes in a half-spindle. We demonstrate that the location of the spindle midzone, distribution of actin filaments, and position of cell cleavage depend on the amount of microtubule asymmetry generated, shifting up to 48.6±3.8% away from the spindle equator in cut cells. The positional shift is dynamic, changing incessantly as spindle microtubules reorganize during cytokinesis. These results suggest that microtubules continuously dictate the distribution of actin filaments and positioning of cell cleavage in grasshopper spermatocytes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    101
    References
    25
    Citations
    NaN
    KQI
    []