Reliability model for frequency converter in electrified railway

2018 
Abstract Reliability analysis of frequency converters based on failures and outages reports constitute an important basis for asset performance and management. Two- and four-state reliability models that recognize the operating characteristics of base load units and peaking units are presented and compared in this study. In this study, a four-state model is modified to a three-state model by combining the ‘needed’ and ‘not-needed’ forced-out states. Moreover, the transitions in the three-state model for power frequency converter have been designed according to real operational data. An outage-reporting database modelled considering IEEE STD 762 is presented and compared with the existing failure-reporting database of the case considered here. Furthermore, a method to extract information missing in the failure-reporting database by electrical readings is proposed to meet the requirements of the outage-reporting database. The study found that the results of indexes based on the IEEE four-state model are not reasonable for the frequency converter given their differences with the gas-turbine results under operational conditions. The forced outage rates and availability factors of twelve actual traction frequency converters of Swedish railways network are presented to validate the modified model.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    4
    Citations
    NaN
    KQI
    []