Carbon limitation leads to thermodynamic regulation of aerobic metabolism

2020 
Organic matter (OM) metabolism in freshwater ecosystems is a critical source of uncertainty in global biogeochemical cycles, yet aquatic OM cycling remains poorly understood. Here, we present the first work to explicitly test OM thermodynamics as a key regulator of aerobic respiration, challenging long-held beliefs that organic carbon and oxygen concentrations are the primary determinants of respiration rates. We pair controlled microcosm experiments with ultrahigh-resolution OM characterization to demonstrate a clear relationship between OM thermodynamic favorability and aerobic respiration under carbon limitation. We also demonstrate a shift in the regulation of aerobic respiration from OM thermodynamics to nitrogen content when carbon is in excess, highlighting a central role for OM thermodynamics in aquatic biogeochemical cycling particularly in carbon-limited ecosystems. Our work therefore illuminates a structural gap in aquatic biogeochemical models and presents a new paradigm in which OM thermodynamics and nitrogen content interactively govern aerobic respiration.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    4
    Citations
    NaN
    KQI
    []