A DNA-origami nuclear pore mimic reveals nuclear entry mechanisms of HIV-1 capsid

2020 
The capsid of human immunodeficiency virus 1 (HIV-1) plays a pivotal role in viral nuclear import, but the mechanism by which the viral core passages the nuclear pore complex (NPC) is poorly understood. Here, we use DNA-origami mimics of the NPC, termed NuPODs (NucleoPorins Organized by DNA), to reveal the mechanistic underpinnings of HIV-1 capsid nuclear entry. We found that trimeric interface formed via three capsid protein hexamers is targeted by a triple-arginine (RRR) motif but not the canonical phenylalanine-glycine (FG) motif of NUP153. As NUP153 is located on the nuclear face of the NPC, this result implies that the assembled capsid must cross the NPC in vivo. This hypothesis is corroborated by our observations of tubular capsid assemblies penetrating through NUP153 NuPODs. NUP153 prefers to bind highly curved capsid assemblies including those found at the tips of viral cores, thereby facilitating capsid insertion into the NPC. Furthermore, a balance of capsid stabilization by NUP153 and deformation by CPSF6, along with other cellular factors, may allow for the intact capsid to pass NPCs of various sizes. The NuPOD system serves as a unique tool for unraveling the previously elusive mechanisms of nuclear import of HIV-1 and other viruses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    97
    References
    3
    Citations
    NaN
    KQI
    []