EXPLORING THE MOLECULAR BASIS OF H5N1 HEMAGGLUTININ BINDING WITH CATECHINS IN GREEN TEA: A FLEXIBLE DOCKING AND MOLECULAR DYNAMICS STUDY

2012 
The influenza A (H5N1) virus attracts a worldwide attention and calls for the urgent development of novel antiviral drugs. In this study, explicitly solvated flexible docking and molecular dynamics (MD) simulations were used to study the interactions between the H5N1 sub-type hemagglutinin (HA) and various catechin compounds, including EC ([–]-epicatechin), EGC ([–]-epigallocatechin), ECG ([–]-epicatechin gallate) and EGCG ([–]-epigallocatechin gallate). The four compounds have respective binding specificities and their interaction energies with HA decrease in the order of EGCG (-133.52) > ECG (-111.11) > EGC (-97.94) > EC (-83.39). Units in kcal mol-1. Residues IleA267, LysA269, ArgB68 and GluB78 play important roles during all the binding processes. EGCG has the best bioactivity and shows potential as a lead compound. Besides, the importance was clarified for the functional groups it was revealed that the C5′ hydroxyl and trihydroxybenzoic acid groups are crucial for the catechin inhibitory activities, especially the latter. Combined with the structural and property analyses, this work also proposed the way to effectively modify the functional groups of EGCG. The experimental efforts are expected in order to actualize the catechin derivatives as novel anti-influenza agents in the near future.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    7
    Citations
    NaN
    KQI
    []