mm-Wave Surface Acoustic Wave Filter based on Hexagonal Boron Nitride

2021 
We show that the operating frequency of surface acoustic wave filter can be significantly improved by adopting an emerging two-dimensional material: hexagonal boron nitride. Electromechanical properties estimated from first principles' analysis revealed that the material has the potential to realize RF filters in mm-Wave. The following piezoelectric simulation demonstrated an operation frequency as high as 36 GHz, which corresponds to Ka-band (from 26.5 to 40 GHz), with the insertion loss of 3 dB. This was achieved with the 150 nm period interdigital transducer on hexagonal boron nitride. Fabricating this scale of metal gratings is not very difficult with advanced lithography technology. As such, a low-power RF filter for 5G and beyond can be realized with the surface acoustic wave of hexagonal boron nitride.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    0
    Citations
    NaN
    KQI
    []