WRF Forecasts of Great Plains Nocturnal Low-Level Jet-Driven MCSs. Part II: Differences between Strongly and Weakly Forced Low-Level Jet Environments

2016 
AbstractThe classic Great Plains southerly low-level jet (LLJ) is a primary factor in sustaining nocturnal convection. This study compares convection-allowing WRF forecasts of LLJ events associated with MCSs in strongly and weakly forced synoptic environments. The depth of the LLJs and magnitude, altitude, and times of the LLJ peak wind were evaluated in observations and WRF forecasts for 31 cases as well as for case subsets of strongly and weakly forced synoptic regimes. LLJs in strongly forced regimes were stronger, deeper, and peaked at higher altitudes and at earlier times compared to weakly forced cases. Mean error MCS-centered composites of WRF forecasts versus RUC analyses were derived at MCS initiation time for the LLJ atmospheric water vapor mixing ratio, LLJ total wind magnitude, convergence, most unstable convective available potential energy (MUCAPE), and most unstable convective inhibition (MUCIN). In most configurations, simulated MCSs in strongly and weakly forced regimes initiated to the n...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    12
    Citations
    NaN
    KQI
    []