Natural fractures in some US shales and their importance for gas production

2010 
Abstract Shale gas reservoirs are commonly produced using hydraulic fracture treatments. Microseismic monitoring of hydraulically induced fracture growth shows that hydraulic fractures sometimes propagate away from the present-day maximum horizontal stress direction. One likely cause is that natural opening-mode fractures, which are present in most mudrocks, act as weak planes that reactivate during hydraulic fracturing. Knowledge of the geometry and intensity of the natural fracture system and the likelihood of reactivation is therefore necessary for effective hydraulic fracture treatment design. Changing effective stress and concomitant diagenetic evolution of the host-rock controls fracture initiation and key fracture attributes such as intensity, spatial distribution, openness and strength. Thus, a linked structural-diagenesis approach is needed to predict the fracture types likely to be present, their key attributes and an assessment of whether they will impact hydraulic fracture treatments significantly. Steep (>75°), narrow ( 100, indicating that the fractures are clustered. These fractures, especially where present in clusters, are likely to divert hydraulic fracture strands. Early, sealed, compacted fractures, fractures associated with deformation around concretions and sealed, bedding-parallel fractures also occur in many mudrocks but are unlikely to impact hydraulic fracture treatments significantly because they are not widely developed. There is no evidence of natural open microfractures in the samples studied.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    74
    Citations
    NaN
    KQI
    []