Subwavelength structures for high power laser antireflection application on fused silica by one-step reactive ion etching

2016 
Abstract In this paper we report a simple method to fabricate a novel subwavelength structure surface on fused silica substrate using one-step reactive ion etching with two-dimensional polystyrene colloidal crystals as masks. The etching process and the morphologies of the obtained structure are controlled. We show that the period of the obtained fused silica pillar-like arrays were determined by the initial polystyrene nanoparticle size. The height of pillar arrays can be adjusted by controlling the etching duration, which is proved to be of importance in tailoring the antireflection properties of subwavelength structures surface. The novel subwavelength structures surface exhibit excellent broadband antireflection properties, but the size of the pillar affects the antireflective properties in short wavelength region. We anticipate this method would offer a convenient and scalable way for inexpensive and high-efficiency high power laser field designs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    13
    Citations
    NaN
    KQI
    []