Effects of glucocorticoid receptor antagonist, RU486, on the proliferative and differentiation capabilities of bone marrow mesenchymal stromal cells in ovariectomized rats

2013 
Glucocorticoids (GCs) potentially regulate the proliferation, differentiation, and premature senescence of bone marrow mesenchymal stem/stromal cells (MSCs). In the present study we investigated the effects mediated by endogenous GCs and the effects of an antagonist of the glucocorticoid receptor, RU486, on the proliferative and differentiation capabilities of MSCs using an ovariectomized (OVX) animal model. Following ovariectomy and a decrease in systemic estradiol levels, the serum concentration of corticosterone is significantly increased in OVX rats. Compared to sham-operated controls, the total superoxide dismutase (SOD) activity in serum of OVX rats and the proliferation of their MSCs are significantly reduced. Furthermore, the osteogenic differentiation capabilities of OVX rat MSCs are significantly decreased, while adipogenic capabilities tend to increase. Subcutaneous administration of RU486 effectively increases the population and proliferative capacity of the MSCs in OVX rats. RU486 treatment also improves osteogenic capabilities and down-regulates adipogenic capabilities of MSCs. These results strongly indicate that the elevated levels of endogenous GCs induced by estrogen depletion might accelerate the premature senescence of MSCs and reduce their proliferative and osteogenic differentiation capabilities, while the blockage of the effects of endogenous GCs may restore their capabilities. These responses could potentially be developed to protect the capabilities of MSCs from oxidative stress-induced premature senescence and extend their lifespan in patients with advancing age and estrogen depletion. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31: 760–767, 2013
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    9
    Citations
    NaN
    KQI
    []