Nonlinear vibration and stability analysis of an electrically actuated piezoelectric nanobeam considering surface effects and intermolecular interactions

2017 
This paper investigates the nonlinear vibration and stability analysis of a doubly clamped piezoelectric nanobeam, as a nano resonator actuated by a combined alternating current and direct current loadings, including surface effects and intermolecular van der Waals forces. The governing equation of motion is obtained using the extended Hamilton principle. The multiple scales method is used to solve nonlinear equations of motion. The influence of van der Waals forces, piezoelectric voltages and surface effects are investigated on the static equilibria, pull-in voltages and dynamic primary resonances of the nano resonator. It is shown that for accurate and exact investigation of the system response, it is necessary to consider the surface effects. To validate the analytical results, numerical simulation is performed. It is seen that the perturbation results are in accordance with numerical results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    32
    Citations
    NaN
    KQI
    []