Quantum chemical investigations on hydrogen bonding interactions established in the inclusion complex β-cyclodextrin/benzocaine through the DFT, AIM and NBO approaches

2017 
Structure and stability of an inclusion complex formed by Benzocaine (BZC) and β-cyclodextrin (β-CD) were investigated computationally using different levels of theory. The conformational research based on PM6 method allowed reach two minimum-energy structures: model A and model B. The lowest conformers have been exposed to fully geometry optimization employing four DFT functionals: B3LYP, CAM-B3LYP, M05-2X and M06-2X. The performed DFT calculations have identified the model B, in which the amino group is located at the primary face of β-CD, as the most stable complex by an amount up to −40 kcal/mol. Further, the greater stabilization of model B in respect to model A, has been ascertained through AIM and NBO analyses which clarified the main hydrogen bonds HBs interactions governing the reactivity of BZC inside the hydrophobic cavity of β-CD. Finally, the estimated isotropic 1H nuclear magnetic shielding constants generated from the gauge-including-atomic-orbital calculation have been analyzed and then compared with the available experimental data.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    11
    Citations
    NaN
    KQI
    []