Modeling and Design Considerations of HgCdTe Infrared Photodiodes under Nonequilibrium Operation

2007 
The general approach and effects of nonequilibrium operation of Auger suppressed HgCdTe infrared detectors are well understood. However, the complex relationships of carrier generation and dependencies on nonuniform carrier profiles in the device prevent the development of simplistic analytical device models with acceptable accuracy. In this work, finite element methods are used to accurately model the devices, including self-consistent, steady-state solutions of Poisson's equation and the carrier continuity equations for carrier densities, Boltzmann transport theory, and published models for recombination/generation processes in HgCdTe. Numerical simulations are used to optimize the material structure and doping levels for an Auger suppressed detector with λc = 5.5 μm at 200 K. The optimized detector structure with step doping and compositional profiles is then compared to a device with realistic gradient doping and compositional profiles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    25
    Citations
    NaN
    KQI
    []