Further characterization of an amsacrine-resistant line of HL-60 human leukemia cells and its topoisomerase II. Effects of ATP concentration, anion concentration, and the three-dimensional structure of the DNA target.

1993 
Abstract The characterization of type II topoisomerases from amsacrine-sensitive (HL-60) and amsacrine-resistant (HL-60/AMSA) human leukemia cells was extended. The intercalator resistance and etoposide sensitivity of the HL-60/AMSA cells themselves were confirmed, and the stability of this pharmacologic phenotype over many hundreds of cell generations was demonstrated. Prolonging exposure of HL-60/AMSA cells to amsacrine did not alter their sensitivity relative to that of HL-60 cells. Improved methods of immunoblotting allowed clear demonstration that the topoisomerase II within these cells exhibited sensitivity and resistance characteristics that mirrored those of the cells and the isolated enzymes themselves. Additional biochemical characterization of the type II topoisomerases indicated that both enzymes relaxed supercoiled DNA in a distributive fashion and that the ATP concentrations at which optimal catalytic activity of the two enzymes was exhibited were identical. The enzymes differed, however, in their activity optima in buffers of various type and ionic strength. Furthermore, the inability of the HL-60/AMSA enzyme to exhibit enhanced DNA cleavage in the presence of amsacrine could be overcome if the DNA target molecule contained a bend cloned into its polylinker region. By contrast, a bend in a DNA plasmid containing no polylinker was resitant to amsacrine-enhanced cleavage in the presence of HL-60/AMSA topoisomerase II, as was a plasmid containing a polylinker with no bend. This suggests that an unusual DNA conformation (a bend) in a specific DNA context (a polylinker) may be favoured site for topoisomerase II action. It also suggests a mechanism by which the sites and extent of topoisomerase II activity can be controlled in cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    9
    Citations
    NaN
    KQI
    []