An 1,4-α-glucosyltransferase defines a new maltodextrin catabolism scheme in Lactobacillus acidophilus

2020 
The maltooligosaccharide (MOS) utilization locus in Lactobacillus acidophilus NCFM, a model for human small-intestine lactobacilli, encodes a family 13 subfamily 31 glycoside hydrolase (GH13_31), annotated as an 1,6-α-glucosidase. Here, we reveal that this enzyme (LaGH13_31B) is an 1,4-α-glucosyltransferase that disproportionates MOS with preference for maltotriose. LaGH13_31B acts in concert with a maltogenic α-amylase that efficiently releases maltose from MOS larger than maltotriose. Collectively, these two enzymes promote efficient conversion of preferentially odd-numbered MOS to maltose that is phosphorolysed by a maltose phosphorylase, encoded by the same locus. Structural analyses revealed the presence of a flexible elongated loop, which is unique for LaGH13_31B and its close homologues. The identified loop insertion harbours a conserved aromatic residue that modulates the activity and substrate affinity of the enzyme, thereby offering a functional signature of this previously undescribed clade, which segregates from described activities such as 1,6-α-glucosidases and sucrose isomerases within GH13_31. Sequence analyses revealed that the LaGH13_31B gene is conserved in the MOS utilization loci of lactobacilli, including acidophilus cluster members that dominate the human small intestine.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    0
    Citations
    NaN
    KQI
    []