Microscale Silicon-Based Anodes: Fundamental Understanding and Industrial Prospects for Practical High-Energy Lithium-Ion Batteries.

2021 
To accelerate the commercial implementation of high-energy batteries, recent research thrusts have turned to the practicality of Si-based electrodes. Although numerous nanostructured Si-based materials with exceptional performance have been reported in the past 20 years, the practical development of high-energy Si-based batteries has been beset by the bias between industrial application with gravimetrical energy shortages and scientific research with volumetric limits. In this context, the microscale design of Si-based anodes with densified microstructure has been deemed as an impactful solution to tackle these critical issues. However, their large-scale application is plagued by inadequate cycling stability. In this review, we present the challenges in Si-based materials design and draw a realistic picture regarding practical electrode engineering. Critical appraisals of recent advances in microscale design of stable Si-based materials are presented, including interfacial tailoring of Si microscale electrode, surface modification of SiOx microscale electrode, and structural engineering of hierarchical microscale electrode. Thereafter, other practical metrics beyond active material are also explored, such as robust binder design, electrolyte exploration, prelithiation technology, and thick-electrode engineering. Finally, we provide a roadmap starting with material design and ending with the remaining challenges and integrated improvement strategies toward Si-based full cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    237
    References
    0
    Citations
    NaN
    KQI
    []