Frequency-Domain Compressive Channel Estimation for Frequency-Selective Hybrid Millimeter Wave MIMO Systems

2018 
Channel estimation is useful in millimeter wave (mm-wave) MIMO communication systems. Channel state information allows optimized designs of precoders and combiners under different metrics, such as mutual information or signal-to-interference noise ratio. At mm-wave, MIMO precoders and combiners are usually hybrid, since this architecture provides a means to trade-off power consumption and achievable rate. Channel estimation is challenging when using these architectures, however, since there is no direct access to the outputs of the different antenna elements in the array. The MIMO channel can only be observed through the analog combining network, which acts as a compression stage of the received signal. Most of the prior work on channel estimation for hybrid architectures assumes a frequency-flat mm-wave channel model. In this paper, we consider a frequency-selective mm-wave channel and propose compressed sensing-based strategies to estimate the channel in the frequency domain. We evaluate different algorithms and compute their complexity to expose tradeoffs in complexity overhead performance as compared with those of previous approaches.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    119
    Citations
    NaN
    KQI
    []