Quantitative analysis of the Portevin–Le Chatelier effect by combining digital image correlation and dead-weight-type tensile test
2021
Abstract A quantitative evaluation method of a serration deformation behavior by a dead-weight tensile test combined with a strain measurement by a DIC method is proposed. This method applies to binary solid solution aluminum alloys and a ternary cluster strengthened aluminum alloy. In the dead-weight tensile test, the serrated flow was measured as a stress-strain curve with a stepped-shape divided into two stages of a stress rising phase and a strain burst phase. By adopting this tensile test, the serration deformation behavior can be measured with an extremely reproducibility. It was confirmed that an elastic deformation occurs predominantly in the stress rising phase, and this deformation behavior is discussed in relation to the concentration of solid solution elements. Propagation of PLC bands has occurred in the strain burst phase. An activation volume obtained from the strain rate in the PLC bands was in good agreement with a calculated value based on a distribution interval assuming a regular square distribution of solute elements. For the ternary alloy strengthened by clusters, it is also shown that this method can be applied to the qualitative estimation of the change in the residual amount of the solid solution element in the matrix during natural aging.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
55
References
1
Citations
NaN
KQI