BRMS1L suppresses ovarian cancer metastasis via inhibition of the β-catenin-wnt pathway

2018 
Abstract A low level of breast cancer metastasis suppressor 1-like (BRMS1L) has been implicated in tumour metastasis involving breast cancer and other cancers. It remains unclear whether BRMS1L is involved in epithelial ovarian cancer (EOC) metastasis and what the molecular mechanism of BRMS1L is in suppressing EOC metastasis. In this study, we examined the mRNA expression and protein level of BRMS1L by screening EOC patients. Our results show that BRMS1L expression is downregulated in EOC patients compared to that in normal people and negatively correlated to pathological stages of EOC. We further explored examining epithelial to mesenchymal transition (EMT) as the molecular mechanism of BRMS1L in cancer cell metastasis. The overexpression of BRMS1L inhibits EOC cell migration and invasion, and this inhibition is correlated to the inactivation of EMT and Wnt/β-catenin signalling in vitro. Knockdown of BRMS1L by shRNA promotes EOC metastasis, enhances EMT process and activates Wnt/β-catenin signalling. These results suggest that BRMS1L plays a critical role in the suppression of ovarian cancer metastasis, and BRMS1L can be considered as a prognostic biomarker and potential therapeutic target for EOC patients.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    4
    Citations
    NaN
    KQI
    []