Trimetallic Ru@AuPt Core-Shell Nanostructures: The Effect of Microstrain on CO Adsorption and Electrocatalytic Activity of Formic Acid Oxidation

2020 
Abstract It is desirable to unravel the correlation between the geometric and electronic structures and the activity and further prepare high-performance electrocatalysts. Here in this paper, trimetallic Ru@Au-Pt core-shell nanoparticles were prepared by sequential ethanol reduction method, and further subject to characterization of X-ray diffraction, high angle annular dark field transmission electron microscopy, X-ray photoelectron spectroscopy and electrochemical CO stripping. Further analysis based on Williamson-Hall method revealed that the Au/Pt atomic ratio and shell thickness result in apparent variation of micro-strain and CO binding energy of Ru@AuPt nanoparticles, where the CO oxidation peak potential showed an inverted volcano-shape dependence on the microstrain of the metal nanoparticles while the catalytic activity towards electrooxidation of formic acid is linearly dependent on the micro-strain. The best Ru@Au-Pt catalyst delivers a specific activity of 4.14 mA cm−2, which is 52 times that of Pt/C, respectively. This study indicated that the microstrain and stacking fault of metal nanoparticles might be a good descriptor for the catalytic activity and may shed light the rational design, synthesis and surface engineering towards the high-performance electrocatalyst.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    4
    Citations
    NaN
    KQI
    []