Genome-wide computational identification of bicistronic mRNA in humans

2013 
Mammalian bicistronic mRNA is a recently discovered mammalian gene structure. Several reported cases of mammalian bicistronic mRNA indicated that genes of this structure play roles in some important biological processes. However, a genome-wide computational identification of bicistronic mRNA in mammalian genome, such as human genome, is still lacking. Here we used a comparative genomics approach to identify the frequency of human bicistronic mRNA. We then validated the result by using a new support vector machine (SVM) model. We identified 43 human bicistronic mRNAs in 30 distinct genes. Our literature analysis shows that our method recovered 100 % (6/6) of the previously known bicistronic mRNAs which had been experimentally confirmed by other groups. Our graph theory-based analysis and GO analysis indicated that human bicistronic mRNAs are prone to produce different yet closely functionally related proteins. In addition, we also described and analyzed three different mechanisms of ORF fusion. Our method of identifying bicistronic mRNAs in human genome provides a model for the computational identification of characteristic gene structures in mammalian genomes. We anticipate that our data will facilitate further molecular characterization and functional study of human bicistronic mRNA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    2
    Citations
    NaN
    KQI
    []