A Bi-allelic Frameshift Mutation in NPNT Causes Bilateral Renal Agenesis in Humans.

2021 
Background: Bilateral renal agenesis (BRA) is a lethal congenital anomaly caused by the failure of normal development of both kidneys early in embryonic development. Oligohydramnios upon fetal ultrasonography reveals BRA. Although exact causes are not clear, BRA is associated with mutations in many renal development genes. However, molecular diagnostics cannot pick up many clinical cases. Nephronectin (NPNT) may be a candidate protein for widening diagnosis. It is essential in kidney development and knockout of Npnt in mice frequently leads to kidney agenesis or hypoplasia. Methods: A consanguineous Han family experienced three cases of induced abortion in the second trimester of pregnancy due to suspicion of BRA. Whole-exome sequencing-(WES)-:based homozygosity mapping detected underlying genetic factors, and a knock-in mouse model confirmed the renal agenesis phenotype. Results: WES and evaluation of homozygous regions in II-3 and II-4 revealed a pathological homozygous frameshift variant in NPNT (NM_001184690:exon8:c.777dup/p.Lys260*), which leads to a premature stop in the next codon. The truncated NPNT protein exhibited decreased expression, as confirmed in vivo by the overexpression of WT and mutated NPNT. A knock-in mouse model homozygous for the detected Npnt mutation replicated the BRA phenotype. Conclusions: A biallelic loss-of-function NPNT mutation causing an autosomal recessive form of BRA in humans was confirmed by the corresponding phenotype of knock-in mice. Our results identify a novel genetic cause of BRA, revealing a new target for genetic diagnosis, prenatal diagnosis, and preimplantation diagnosis for families with BRA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    2
    Citations
    NaN
    KQI
    []