Nanoscale zero-valent iron improved lactic acid degradation to produce methane through anaerobic digestion

2020 
Abstract Serious inhibition of methane production in an anaerobic digestion (AD) system can be caused by propionic acid, which is derived from lactic acid degradation. Nanoscale zero-valent iron (nZVI) was used in this study to improve conversion of propionic acid into acetic acid, thereby promoting methane production. The methane yield was markedly enhanced when nZVI concentration increased from 0 to 2 g/L; however, it decreased when nZVI concentration further increased to 8 g/L. At an nZVI concentration of 2 g/L, the methane yield increased by 37% from 398.5 to 546.4 mL CH4/g TVS. The abundance of Candidatus Cloacamonas in the bacterial community increased from 2.17% to 3.78%, which facilitated conversion of propionic acid into acetic acid. Meanwhile, the abundances of Methanomassiliicoccus and Methanosarcina in archaeal community increased, which was beneficial to methane production. Cyclic voltammetry showed that the electron transfer coefficient in the AD system increased from 0.029 to 0.034 s-1.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    12
    Citations
    NaN
    KQI
    []