Laser forming for flexible fabrication

2000 
A 36-month program supported by the Defense Advanced Research Projects Agency (DARPA) was conducted to demonstrate the feasibility to predictably laser form a variety of ferrous and non-ferrous metals of different thickness. Laser forming provides a method of producing complex shapes in sheet, plate, and tubing without the use of tooling, molds, or dies. By heating a localized area with a laser beam, it is possible to create stress states that result in predictable deformation. This research program has developed, refined and demonstrated constitutive and empirical, and neural network models to predict deformation as a function of critical parametric variables and established an understanding of the effect of laser forming on some metallurgical properties of materials. The program was organized into two, time-phased tasks. The first task involved forming flat plates to one-dimensional (1-D) shapes, such as, hinge bends in various materials including low-carbon steel, high-strength steels, nickel-based super alloys, and aluminum alloys. The second task expanded the work conducted in the first task to investigate three-dimensional (3-D) configurations. The models were updated, 3-D specimens fabricated and evaluated, and cost benefit analyses were performed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    4
    Citations
    NaN
    KQI
    []