Bioactive materials improve some physical properties of a MTA-like cement

2017 
Abstract One of the main disadvantages of MTA is its long setting time which could result in higher solubility and microleakage, producing a failed treatment. Studies have shown that the addition of bioactive glass may decrease the setting time. The aim of this study is to evaluate the compressive strength, setting time, solubility and radiopacity of a MTAlike experimental cement to which different percentage of wollastonite and bioactive glass are added. White MTA Angelus® was used as control; an experimental MTA-like cement (ExpC) was prepared using white Portland cement with 20 wt% of Bi 2 O 3 ; three wollastonite cement composites were prepared adding 10, 20 and 30 wt% of wollastonite to ExpC, and three more adding the same proportions of bioactive glass. Compressive strength was tested according to ADA 30; radiopacity, setting time and solubility were tested according to ISO 6876. SEM observations of the surface were made after the solubility test. Compressive strength, setting time, solubility and radiopacity were reduced as the wollastonite increased; solubility increased with the addition of bioactive glass. The surfaces of MTA Angelus® and ExpC were smoother than Wollastonite and Bioactive glass groups. Addition of wollastonite and bioactive glass improved the physical properties of a MTA-like experimental cement, reducing the setting time with good solubility percentages, which would be an advantage in its clinical use.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    10
    Citations
    NaN
    KQI
    []