The effect of periodic spatial perturbations on the emission rates of quantum dots near graphene platforms.

2020 
Quenching of fluorescence (FL) at the vicinity of conductive surfaces, and in particular, near a 2-D graphene layer has become an important biochemical sensing tool. The quenching is attributed to fast non-radiative energy transfer between a chromophore and the lossy conductor. Increased emission rate is also observed when the chromophore is coupled to a resonator. Here we combine the two effects in order to control the emission lifetime of the chromophore. In our case, the resonator was defined by an array of nano-holes in the oxide substrate underneath a graphene surface guide. We demonstrated an emission rate change by more than 50% as the sample was azimuthally rotated with respect to the polarization of the excitation laser. Such control over the emission life-time could be used to control resonance energy transfer (RET) between two chromophores.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    0
    Citations
    NaN
    KQI
    []