Micromechanical interpretation of fracture toughness of particulate-filled thermoplastics

1991 
The toughness behaviour of particulate-filled thermoplastics is determined by different failure mechanisms in the plastic zone and fracture process zone in front of the macrocrack such as particle-matrix debonding, shear processes or crazing and fracture of matrix fibrils. Theoretical expressions describing the critical strain causing microcrack initiation as well as the critical crack opening and the criticalJ integral value for unstable crack initiation are derived on the basis of a micromechanical analysis. Matrix properties, particle diameter, filler content and phase adhesion are taken into account. Critical particle contents and diameters caused by matrix morphology are discussed. Model calculations are compared with experimental results from acoustic emission analysis and dynamic fracture mechanics tests on PS, PVC and HDPE filled with CaCO3 or SiO2 particles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    21
    Citations
    NaN
    KQI
    []