Localization in Wireless Sensor Networks

2014 
With the proliferation of Wireless Sensor Networks (WSN) applications, knowing the node current location have become a crucial requirement. Location awareness enables various applications from object tracking to event monitoring, and also supports core network services such as: routing, topology control, coverage, boundary detection and clustering. Therefore, WSN localization have become an important area that attracted significant research interest. In the most common case, position related parameters are first extracted from the received measurements, and then used in a second step for estimating the position of the tracked node by means of a specific algorithm. From this perspective, this chapter is intended to provide an overview of the major localization techniques, in order to provide the reader with the necessary inputs to quickly understand the state-of-the-art and/or apply these techniques to localization problems such as robot networks. We first review the most common measurement techniques, and study their theoretical accuracy limits in terms of Cramer-Rao lower bounds. Secondly, we classify the main localization algorithms, taking those measurements as input in order to provide an estimated position of the tracked node(s).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    3
    Citations
    NaN
    KQI
    []