Using modelling and simulation to improve dynamic balancing of biped mobile robots

2015 
Dynamic balancing is a hard problem for biped mobile robots, as is requires real-time processing of complex formulas from noisy sensors. In this paper we demonstrate how an offline modelling and simulation step can help to improve balancing, by providing a first approximation for a biped walking pattern. In order to achieve this goal, we design a physics model of the biped robot, using spline functions for all joint movements. Then we optimise the system parameters using genetic algorithms with the help of a rigid body simulation library. Transferring the evolved control system from the simulation to the physical world poses a number of challenges, especially because of complex sensor and actuator noise in the real world and inaccuracies in the physics model. Methods to minimise these problems are the injection of artificial noise into the simulation process and/or the use of multiple dynamic simulation systems simultaneously. The larger variance in the resulting simulation will result in a generally smal...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []