Electronic mobility in the high-carrier-density limit of ion gel gated IDTBT thin film transistors*

2015 
Indacenodithiophene-co-benzothiadiazole (IDTBT) has emerged as one of the most exciting semiconducting polymers in recent years because of its high electronic mobility and charge transport along the polymer backbone. By using the recently developed ion gel gating technique we studied the charge transport of IDTBT at carrier densities up to 1021 cm−3. While the conductivity in IDTBT was found to be enhanced by nearly six orders of magnitude by ionic gating, the charge transport in IDTBT was found to remain 3D Mott variable range hopping even down to the lowest temperature of our measurements, 12 K. The maximum mobility was found to be around 0.2 cm2V−1s−1, lower than that of Cytop gated field effect transistors reported previously. We attribute the lower mobility to the additional disorder induced by the ionic gating.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    0
    Citations
    NaN
    KQI
    []